1. A pump produces a flow rate of 100 LPM. It has been established that fluid velocity in the discharge line should be between 5 and $7 \mathrm{~m} / \mathrm{s}$. determine the minimum and maximum pipe inside diameter that should be used.

2 What minimum size of commercial pipe tubing with a wall thickness of 2 mm would be required at the inlet and out let of a 100 LPM pump? The inlet and outlet velocities are limited to $1.6 \mathrm{~m} / \mathrm{s}$ and $6 \mathrm{~m} / \mathrm{s}$ respectively.
3.A steel tubing has a 35 mm outside diameter and a 29 mm inside diameter. It is made up of commercial steel of tensile strength of 600 MPa . What is the safe working pressure? Assume tubing is subjected to high pressure shock. Determine the tensile stress for an operating pressure of 12 MPa .
4.A steel tube of $\mathbf{3 1 ~ m m}$ inner diameter has burst pressure of 70 MPa . If the tensile strength is $\mathbf{4 0 0} \mathbf{~ M P a}$. Find the minimum acceptable OD.
5.Select the proper steel tube for a flow rate of $\mathbf{0 . 0 0 1 9 0} \mathbf{~ m} 3 / \mathrm{s}$ and a operating pressure of 70 bars. The maximum recommended velocity is $6.1 \mathrm{~m} / \mathrm{s}$ and the tube the material is dead soft cold drawn (DSCD) steel having a tensile strength of 379 MPa.

Q1 Solution:

$100 \mathrm{LPM}=0.1 / 60=1.667 \times 10^{-3} \mathrm{~m}^{3} / \mathrm{s}$

We know that Discharge $\mathrm{Q}=$ Area \times velocity
$A_{\min }=\frac{\pi}{4}\left(d_{i}^{2}\right)=\frac{\text { Discharge }}{\text { velocity }(\max)}=\frac{1.667 \times 10^{-3}}{7}=2.3814 \times 10^{-4} \mathrm{~m}^{2}$
Solving we get $d_{i}=17.41 \mathrm{~mm}$ (for maximum velocity)
$\mathrm{A}_{\max }=\frac{\pi}{4}\left(\mathrm{~d}_{\mathrm{i}}^{2}\right)=\frac{\text { Discharge }}{\text { velocity }(\text { minmum })}=\frac{1.667 \times 10^{-3}}{5}=3.334 \times 10^{-4} \mathrm{~m}^{2}$

Solving we get $d_{i}=20.6 \mathrm{~mm}$ (for minimum velocity)

Q2 Solution:
$100 \mathrm{LPM}=0.1 / 60=1.667 \times 10^{-3} \mathrm{~m}^{3} / \mathrm{s}$

We know that Discharge $\mathrm{Q}=$ Area x velocity
$A_{\min }=\frac{\pi}{4}\left(d_{i}^{2}\right)=\frac{\text { Discharge }}{\text { velocity }(\max)}=\frac{1.667 \times 10^{-3}}{6}=2.7783 \times 10^{-4} \mathrm{~m}^{2}$

Solving we get $d_{i}=18.8 \mathrm{~mm}$ (for maximum velocity)

Refer to that Table we select $20(\mathrm{OD}) \times 16$ (ID) for pump inlet

$$
A_{\max }=\frac{\pi}{4}\left(\mathrm{~d}_{\mathrm{i}}^{2}\right)=\frac{\text { Discharge }}{\text { velocity }(\text { velocity })}=\frac{1.667 \times 10^{-3}}{1.6}=1.11 \times 10^{-3} \mathrm{~m}^{2}
$$

Solving we get $d_{i}=37.06 \mathrm{~mm}$ (for minimum velocity)

Refer to that Table we select 42 (OD) $\times 36$ (ID) for pump outlet

Q3 Solution:

Bursting pressure $=\mathrm{P}_{\mathrm{BP}}=\frac{2 \mathrm{t} \mathrm{s}}{\mathrm{d}_{\mathrm{i}}}=\frac{2 \times 3 \times 600}{29}=124.13 \mathrm{MPa}$

Since the tubing is subjected to high pressure shock, we can take factor of safety as 10

Working pressure $=\frac{\text { maximum pressure }}{\text { Factor of safety }}=\frac{124.3}{10}=12.43 \mathrm{MPa}=124.3 \mathrm{bar}$
Tensile stress $=\sigma=\frac{P \times D_{i}}{2 \times t}=\frac{12 \times 29}{2 \times 3}=58 \mathrm{MPa}$

Q4 Solution:
Bursting pressure $=P_{B P}=\frac{2 \mathrm{t} \mathrm{s}}{\mathrm{d}_{\mathrm{i}}}$
$70=\frac{2 \times \mathrm{t} \times 400}{31}$, solving we get $\mathrm{t}=2.71 \mathrm{~mm}$

Also $O D=I D+2 t=31+2 \times 2.71=36.425 \mathrm{~mm}$

Q5 Solution:
$\mathrm{A}=\frac{\pi}{4}\left(\mathrm{~d}_{\mathrm{i}}^{2}\right)=\frac{\text { Discharge }}{\text { velocity }}=\frac{1.90 \times 10^{-3}}{6.1}=3.115 \times 10^{-4} \mathrm{~m}^{2}$
Solving we get $\mathrm{d}_{\mathrm{i}}=19.91 \mathrm{~mm}$
Let us select $\mathrm{OD}=22 \mathrm{~mm}, \mathrm{ID}=20 \mathrm{~mm}$ wall thickness $=1 \mathrm{~mm}$
Bursting pressure $=\mathrm{P}_{\mathrm{BP}}=\frac{2 \mathrm{t} \mathrm{s}}{\mathrm{d}_{\mathrm{i}}}=\frac{2 \times 1 \times 379}{20}=37.9 \mathrm{MPa}$

Working pressure $=\frac{\text { maximum pressure }}{\text { Factor of safety }}=\frac{37.9}{8}=4.74 \mathrm{MPa}=47.4 \mathrm{bar}$

Since the bursting pressure is less than the working pressure, 1 mm wall thickness is not enough. Let us select next size $28 \times 24 \times 2 \mathrm{~mm}$

Bursting pressure $=\mathrm{P}_{\mathrm{BP}}=\frac{2 \mathrm{t} \mathrm{s}}{\mathrm{d}_{\mathrm{i}}}=\frac{2 \times 2 \times 379}{24}=63.2 \mathrm{MPa}$

Working pressure $=\frac{\text { maximum pressure }}{\text { Factor of safety }}=\frac{63.2}{8}=7.90 \mathrm{MPa}=79 \mathrm{bar}$

Since the bursting pressure is more than the working pressure, $28 \times 24 \times 2 \mathrm{~mm}$ pipe is acceptable.

